
Delhi Business Review ? Vol. 4, No. 1, January - June 2003

A FRAMEWORK FOR SOFTWARE PROJECT MANAGERS
TO QUANTIFY THE COST EFFECTIVENESS OF
EXTREME PROGRAMMING PRACTICES

S. Kuppuswami
K. Vivekanandan
Paul Rodrigues

XTREME Programming practices (Xp) is new, innovative and revolutionary software development practices
that are being adopted by software companies. Even though the benefits of the Xp are qualitatively discussed,
many project managers are reluctant to apply these practices in real projects due to the lack of quantitative

proofs. Improvement in productivity of software development is claimed to be one such benefit of the Xp practices.
The present research is undertaken to measure the change in software development productivity when the Xp practices
are applied. The change in productivity is to be computed by including the other factors that influence productivity.
In this paper we propose a framework to measure the effect of extreme programming practices on software development
productivity. This framework includes a data analysis and a data collection method. The research model uses
multiple linear regression technique as the data analysis method. The above framework was applied and found
there is minimum of 25.5 % change in productivity for a change in one level usage of extreme programming
practices.

Introduction
The extreme programming (Xp) is a set of lightweight software development processes that is based on four
values: Communication, Simplicity Feedback and Courage (Beck, 2000). The four values are achieved with the
following highly inter related 12 practices: Onsite customer, small releases, planning game, pair programming,
re-factoring, collective code ownership, system metaphor, 40 hours week, coding standards, simple design,
continuous integration and continuous testing.

The qualitative discussion on the benefits of extreme programming was dealt in (Beck, 2000). Irrespective of
the qualitative explanation on the benefits of extreme programming, many software organizations do not come
forward to adopt the extreme programming practices. This is due to the lack of quantitative proofs on the
benefits of extreme programming practices. Hence present research was undertaken to quantify the benefits of
extreme programming specifically to quantify the effect of extreme programming on software development
productivity. It is inherently felt that the Xp practices increase the software development productivity. It was
also shown that the pair programming practice alone improves the productivity by 15% (Williams, 2000).

The objectives of our research was to

(i) find whether the use of extreme programming influences software development productivity.

(ii) quantify the change in software development productivity when the use of extreme programming influences
the productivity. This change is to be computed concurrently with the changes due to other productivity
factors that also influence the software development productivity.

In this paper we propose a frame work to measure the effect of extreme programming practices on software
development productivity. The framework includes a data analysis method and data collection method. We
have linear multiple regression method for analysis of data and survey method for data collection.

E

S. Kuppuswami, K. Vivekanandan & Paul Rodrigues

The multiple regression method had been used elsewhere to find the effect of process maturity on software
development effort (Clark, 1997) and effect of tools on software development effort (Baik, 2000). By using the
multiple regression method we have found the relationship between one of the predictor variable (use of extreme
programming practices) and the response variable (development productivity). In the multiple regression model
the relationship parameters between response variable and predictor variables are derived empirically from
the collected data.

A questionnaire was prepared and the data were collected from the projects which adopted the extreme
programming policies. The actual size of the product, development effort and the associated productivity
factors were collected. In total 23 productivity factors, 5 COCOMO II scale factors (http://sunset.usc.edu), 17
COCOMO II effort multipliers (http://sunset.usc.edu), and one extreme programming factor were considered for
analysis.

The analysis indicates that the use of extreme programming factor does influence the software development
productivity. The analysis also indicate that the increase of usage of extreme programming practice of one level
will increase the software development productivity a minimum of 25.5 %.

The Section 2 describes the activities in each of the extreme programming practices. It also explains the
probable reasons for increase/decrease in productivity for each of the extreme programming (Xp) practice. The
research problem, the frame work and the hypothesis testing are explained in section 3. The section 4 describes
the data collection method. The result of data analysis is explained in the section 5. A brief conclusion is given
in section 6.

Extreme Programming Practices and their Influence

1. Planning game: The requirements are written
as user stories. The effort and risk are estimated
for each of the story. The stories for first iteration
and release date were planned. The cost
implications of using various technology options
are analyzed. Roles and team organization are
decided. The order of story development within
an iteration (doing risky items first can be
instigated) are decided. Story cards are prepared
and managed. In the case of difficult stories, the
spikes are created to understand the potential
of the solution. Customer determines the scope
(the stories for release and stories for the
iteration).The developers estimate effort to
develop the stories.

2. Small releases: Small but frequent releases are
happened and feedback is obtained. The obtained
feedback is included in its planning for the next
release. .A release is a version of a system with
enough new features that it can be delivered to
users outside the development group. A release
may represent one to three months work.

Name and Explanation of the Xp practices. Type of influence on the productivity.
(+) indicates increase of productivity due to
the practice.
(-) reduces the productivity due to the practice.

? No need of generating time consuming
requirement documents. (+)

? The accuracy of the estimation of the development
effort for user stories is high as the estimation is
done by the developers themselves. (+)

? The risk analysis is done in the form of pikes. (+).

? The user stories are written in front all the
developers by a customer. So the requirements
are correctly understood in the beginning itself.
(+)

? The first iteration of the project may represent
the skeleton of the product. Thus the risk analysis
is done. (+)

? The acceptance test at the end of the each small
releases will help to identify the misunderstanding
of the requirements at an early stage. (+)

? Small releases is a convenient point to introduce
the new or change in already implemented
requirements. (+)

Delhi Business Review ? Vol. 4, No. 1, January - June 2003

3. Metaphor: It is very high level abstraction that
represents the working of the system.

Example: Postal Mail System, Telephone

4. Simple Design: Always use the simplest
possible design that gets the job done. The
requirements will change tomorrow, so only do
what’s needed to meet today’s requirements.

5. Continuous Testing: Xp teams focus on
validation of the software at all times.
Programmers develop software by writing tests
first (often using automated tools such as JUnit),
and then code that fulfills the requirements
reflected in the tests. Customers provide
acceptance tests that enable them to be certain
that the features they need are provided.

6. Refactoring: The quality of the code is improved,
without affecting the functionality of the code, by
ensuring the clarity of the code, no duplication,
no long classes and the other no bad code smells.

7. Onsite Customer: One of the person from the
customer organization is s always present with
the software development team for the
discussions and planning game activities. The
customer specify his requirements through a set
of simple English sentences called user stories.
The customer also writes stories and acceptance
tests with the help of development team.

? Minimum Time is spent on documenting the
architecture. (+)

? Better understanding of the system for the
developers. (+)

? Not sufficient, or not really representative
metaphors may lead to increase in the effort and
thus reduces the productivity. (-)

? Not having proper architecture document may
become critical in real time and high reliability
projects. (-)

? Minimum effort is spent on design documentation.
(+)

? Simple design leads to easier implementation. (+)

? Simple design leads to less errors so that the lot
of effort is saved in defect removal. (+)

? The errors are identified early and prevented from
propagating to the next level. (+)

? The integration is made easier. (+)
? The effort for unit test is done. (-)

? The re-factoring of the code consume considerable
effort and consequent testing and integration
consumes the development effort. (-)

? Increase in the quality of the code leads to decrease
in the test effort. (+)

? Decreases the complexity of the code leads to effort
saving in integration.(+)

? During re-factoring the new errors may be injected.
Considerable effort is to be spent to remove this
defects.(-)

? Due to high quality of the refactored code, the code
may be reused in the same project itself. (+)

? The clarification regarding the requirements can
be enquired immediately. (+)

? Acceptance tests by the customer during the
project period will reveal any misunderstanding
of the requirements in the early stage itself. (+).

? The onsite customer represents the entire
customer organization for finalizing the
requirements. The incorrect understanding of the
requirements by the onsite customer may lead to
decrease in productivity. (-)

Name and Explanation of the Xp practices. Type of influence on the productivity.
(+) indicates increase of productivity due to
the practice.
(-) reduces the productivity due to the practice.

S. Kuppuswami, K. Vivekanandan & Paul Rodrigues

? Two programmers doing the same a task reduces
the available work force by half. (-).

? Productivity increases by 15 %. (+).

? Pair rotation may consume some time as the new
partner may take time to understand the code.(-)

? The increase in quality reduces the test effort. (+)

? Due to pair rotation a most of the developers will
get to know the code. This helps in code ownership,
integration and continuous testing. (+)

? No time is spent on waiting for the owner of the
code to correct if any bug is found out. (+)

? When a person corrects the code written by the
others, the quality may be improved. (+)

? When a person corrects the code written by the
others, the errors may be injected. (-)

? Some time may be spent in understanding the
code written by the others. (-)

? The developers never get fatigue due to over work.
This leads to increase in productivity (more in error
finding rate, more code written and less error
injection). (+)

? Since over time is not allowed the developers may
tend to estimate larger amount for implementing
the user stories on the safer side. (-)

? Effort is spent in adhering the code requirements.
(-)

? Adhering the coding standard will reduce effort
required for the unit testing, continuous
integration and collective code ownership.(+)

? The integration errors are found at early stage.
Thus the propagation of the errors were prevented.
(-)

8. Pair Programming: Two persons are allotted
at one terminal. Together the pair, design, write
test code, code, and re-factor if necessary. Pair
programmers are interchanged. The working
space for pair programmers are arranged
comfortably.

9. Collective Code Ownership: All the developed
code is owned by the entire development team.
Any one can improve any part of the code at any
time. Every body owns all the code meaning every
body is responsible for it. The developers ensure
that the unit tests must run before and after
each integration.

10. 40 Hours/week: The sustainable work hours for
company and the developer is decided and
strictly followed. i.e. overtime is not allowed.

11. Coding Standard: The coding standard is to be
defined and every one codes to the same standard.
The code itself can serve as a document

 12. Continuous Integration: Integrate the code
several times a day after they get unit tests run
for the system to run. Build process is stream
lined. One or more machine(s) are reserved for
integration.

Name and Explanation of the Xp practices. Type of influence on the productivity.
(+) indicates increase of productivity due to
the practice.
(-) reduces the productivity due to the practice.

The Research Method
The Research Problem
Whenever a new element such as new tool, new language or process change is introduced in the software
development life cycle, usefulness of the newly introduced element is to be found out. The usefulness of the
newly introduced element can be found by analyzing the effect of the newly introduced element on some
important attributes. The software development productivity is one such attribute. The productivity can be
defined in many ways. But for our research the productivity is considered as the ratio between effective
source lines of code generated for the product and development effort.

Delhi Business Review ? Vol. 4, No. 1, January - June 2003

The usefulness of the extreme programming policies can be found out by analyzing the effect of extreme
programming policies on software development productivity. The proposed hypothesis is that, increasing
the level of usage of extreme programming practices increases the amount of software development
productivity. The underlying research problem is to quantify the effect of extreme programming practices
on software development productivity when the other productivity factors also affects the productivity. The
research problem is to be mapped onto a mathematical model so that the mathematical model can be
manipulated to obtain the solution.

Frame Work
The multiple regression analysis is used to analyze the relationship between a single dependent variable
and set of predictor variables. For the present research, the response variable is productivity, that is
measured as the number source lines generated per programmer month and the predictor variables are the
productivity factors including the extreme programming factor. Since the productivity factors are non
linearly related to productivity, a non linear multiple regression equation was considered to represent our
problem. The power function based (Darper and Smith, 1996) non linear multiple regression equation is
selected for our research model. The equation can be given as

P = B0 . X1
B1. X2

B2.X3
B3 . ….Xn

Bn ...Equation 1

Where P is the productivity, B 0 is constant, X1, X2, X3, represents some value of the productivity factors of c1,
c2 c3 .. Cn respectively. And B 1,B2,B3 ... Bn are regression coefficients that represent weight of the productivity
factors. Suppose if any productivity factor say X1’s regression coefficient B1 (weight) is zero, then the
productivity factor X1 does not influence response variable (productivity).

Even though the non linear relationship between productivity and productivity factors is represented by
Equation 1, the well established statistical techniques to analyze the data are available only for linear
multiple regression models. In order to utilize those statistical techniques, the Equation 1 is converted into
linear regression equation by taking logarithm on both sides.

Ln (P) = Ln Bo + B1 Ln X1 +B2 Ln X2 + B3 Ln X3 + … + Bn Ln Xn …Equation 2

The equation 2 is also called as log log linear equation. The 23 productivity factors (5 COCOMO II scale
factors, 17 COCOMO II effort multipliers and one extreme programming factor- shown in Table 1) are
considered for analysis.

The productivity factors excluding the EXP have been considered for process maturity and proposed three
sub models namely full, small, and compact models (Clark, 1997). We have adopted this including extreme
programming factor for our analysis as explained below:

The Full Model: In this model all the 23 factors are considered. The equation 2 is rewritten with all 23
productivity factors.

Ln (PRODUCTIVITY) =

LnB0+ BPREC Ln (PREC) +BRELY Ln (RELY)+BDATA Ln (DATA)+

BRUSE Ln (RUSE)+BTIME Ln (TIME)+BSTOR LN (STOR)+BTEAM Ln (TEAM)

+BACAP Ln(ACAP)+BPCAP Ln(PCAP)+BPCON Ln (PCON)+BAEXP Ln(AEXP)

+BPEXP Ln (PEXP)+BLTEX Ln (LTEX)+BFLEX Ln (FLEX)+BTOOL Ln (TOOL)+

BPVOL Ln (PVOL)+BSCED Ln (SCED)+BRESL LN (RESL)+BPMAT Ln (PMAT)

+BCPLX Ln(CPLX)+BEXP Ln(EXP) ……. ..Equation 3.0

The Small Model: In this model the four high level productivity factors along with the extreme programming
factor are considered. The four high level productivity factors are formed by aggregating the associated

S. Kuppuswami, K. Vivekanandan & Paul Rodrigues

Table 1: The Productivity Factors

Sl. No. Name of the variable. Explanation of the variable

1 PREC Precedent ness of the project.

2 RELY Required reliability for the developed product.

3 DATA Data handling requirements.

4 RUSE Reuse level in making the product.

5 DOCU Level of the documentation required.

6 TIME Execution time requirements.

7 STOR Storage requirements.

8 TEAM Cohesiveness of the Team.

9 ACAP Analyst capability.

10 PCAP Programmers’ capability.

11 PCON Personnel continuity.

12 AEXP Analyst or onsite customer experience.

13 PEXP Programmers’ experience.

14 LTEX Language and tools experience.

15 FLEX Development flexibility.

16 TOOL Usage of CASE Tools.

17 PVOL Platform volatility.

18 SCED Schedule pressure.

19 RESL Architecture resolution.

20 PMAT Process maturity.

21 SITE Multi-site development.

22 CPLX Product complexity.

23 EXP Level for the use of extreme programming.

productivity factors as in Table 2. For aggregation the multiplication of associated productivity factors are
employed. The small model equation is given below.

Ln (PRODUCTIVITY)= Ln (B0) + BPRODUCT Ln (PRODUCT)+ BDEVT Ln (DEVT) + BPROCESS Ln (PROCESS) +
+BENVN Ln (ENVN) + BEXP Ln (EXP) ….. Equation 4.0

Table 2: The aggregated variables

Sl.No Name of the Aggregated Aggregation of the productivity
Group variable Name factors

1. Product related productivity factors. PRODUCT PREC, RESL, RELY, DATA, CPLX,
RUSE, DOCU, TIME, and STOR

2. Development Team productivity factors. DEVT ACAP, PCAP, AEXP, PEXP, LTEX,
PCON, TEAM

3. Process Related productivity factors. PROCESS PMAT

4. Environment related cost factor ENVN FLEX, TOOL, SITE, PVOL, SCED

5. Extreme programming related cost EXP EXP
factor.

Delhi Business Review ? Vol. 4, No. 1, January - June 2003

Compact Model: In this model only two predictor variables are considered.

Ln (PRODUCTIVITY) = Ln B0 + BEM Ln (EM)+ BEXP Ln (EXP) …Equation 5.0

Where the variable EM represents the aggregation of all the 22 COCOMO productivity factors of Table 1.

Hypothesis Testing
The aim of the present research is to compute the value of B EXP (regression coefficient of EXP predictor) from
collected software development project data and to prove that B EXP!=0. If the B EXP is zero, it implies that the
use of extreme programming factor does not affect the productivity. Because substituting the BEXP that is
zero in the research model (Equation. 1) will make the EXP, related term one. The null hypothesis and the
alternative hypothesis are stated as follows:

H0:BEXP =0

H1:BEXP !=0

The null hypothesis is to be tested at 95% confidence level (Darper and Smith, 1996).

Computation of the Regression Coefficient BEXP: It is possible to compute BEXP only when the data for
the entire population (considering all the software development projects which use extreme programming
approach) is available. Even though, theoretically it is possible to compute the BEXP, in reality it is only
possible to compute the bEXP (from samples) which is an estimate of BEXP. But given a bEXP, it is possible to
find the interval (range) in which the BEXP value will lie. The interval is called bEXP estimation interval. In
order to successfully conclude that the EXP does affect the productivity, the zero value should not exist in
bEXP interval.

Data Collection Method
We have adopted the survey method to collect the data. The data were obtained by obtaining responses for a
questionnaire (www.vsnl.net). The questionnaire is adopted from (http://sunset.usc.edu). The development
effort and size of the project were the only quantitative data obtained. The qualitative data is obtained for all
the other productivity factors. The data were collected from 21 projects. Out which 16 project data were considered
for the data analysis and the others were rejected due to the presence of the outlier values. The only small and
compact research model is used for data analysis.

Computation of Software Development Productivity
The productivity is computed as the ratio between Effective Source Lines of Code and Effort in Person
Months. A person month is defined as 152 man hours. The Effective Source Lines of Code (ESLOC)is
computed as follows.

ESLOC = NSLOC*((BRAK+100)/100)+(ASLOC*.20)

Where

NSLOC - Newly Generated Source Lines of Code

ASLOC - Adopted Source Lines of Code (from other projects or from library)

Break - The percentage of code thrown away due to the change in requirements.

COCOMO Productivity Factors
Ratings and Values: The ratings for the COCOMO II productivity factors (5 scale factors and 22 effort
multipliers) are obtained in the interval scale, having the following ratings: VERY LOW, LOW, MEDIUM,
HIGH VERY HIGH, and EXTRA HIGH.

S. Kuppuswami, K. Vivekanandan & Paul Rodrigues

Assigning Numerical Values to COCOMO Predictors: In order to do the analysis the qualitative
predictor values, are to be converted into numerical values. As a first step the ratings for COCOMO
predictors VERY LOW. LOW, MEDIUM, HIGH, VERY HIGH, and EXTRA HIGH are converted into R1, R2,
R3, R4, R5, and R6. The frequency response for the each of the predictor value determines the median of the
predictor values. Median ratings were given a value of 1.0. The ratings on either side of the median were
given values that differs from 1.0 by 10%. For example, in a project if the ratings of PREC predictor changes
from R3 to R4 the productivity will increase by 10%. For brevity, assigned values are shown only for three
COCOMO predictors in Table 3.

Table 3: Assignment of Numerical Values to COCOMO Predictors

Predictor R1 R2 R3 R4 R5 R6 PR

PREC 1.10 1 0.9 0.81 0.729 0.6561 1.6

RELY 0.73 0.81 0.9 1 1.1 - 1.5

DATA - 0.81 0.9 1 1.1 - 1.3

The Productivity Range(PR) gives the ratio between highest predicator value and the lowest predictor
value. For example if the predictor value for DATA changes from R2 to R6, there occurs 30% productivity
difference.

Extreme Programming Factor
Each of the twelve Xp practices are measured using a nominal scale. The ratings, description of the ratings
and the weights assigned to each of the ratings are explained in Table 4. The value for extreme programming
factor (EXP) is obtained by computing weighted average of all 12 policies. The 12 policies are given equal
weightage.

Table 4: EXP Measurement Scale

Sl.No. Ratings Description of the Ratings Weight

1 Almost always (over 90% of the time) When the practice is adopted as recommended. 100

2 Frequently (about 60 to 90% of the time) When the practice are is adopted but
some times the practice is omitted due to difficult circumstances. 75

3 About Half (about 40 to60% of the time) When the practice is about half of the time. 50

4 Occasionally (about 10 to 40% of the time) When the practice is followed but less often. 25

5 Rarely if ever (less than 10% of the time) When the practice is rarely followed. 1

6 Not followed When the practice is not followed at all. 0

7 Don’t know When you are uncertain about how to respond for the particular practice. 0

The final rating EXP is computed as the weighted average of all 12 practices as below.

... …………..Equation 6.0

Assigning Numerical Value to EXP: The numerical value for the EXP for each of the project predictor is

=Weight of XPi%

Delhi Business Review ? Vol. 4, No. 1, January - June 2003

obtained through equation 6.0. EXP can have values from 0 to 5.0.. The median value of the EXP data is
found to be 3.86 (average of 8th and 9th project EXP values, when they are arranged in ascending order) and
is assigned with rating of 1.0. The EXP values which differ the median value by 1 are given 10% increase or
decrease in value on either side. This is shown in Table 5. The value for all other Xp projects were interpolated
by using the values given in Table 5. The computed EXP values and the assigned EXP values are given in
Table 6.

Table 5: Interval Range of EXP values

EXP Values 4.86 3.86 2.86 1.86 .86

Assigned Value 1.1 1.0 0.9 0.81 0.729

Table 6: The Computed and Assigned Values for EXP

EXP 2.92 3.75 2.92 2.08 2.41 3.34 4.27 4.06 3.75 4.79 3.96 3.75 4.17 4.27 4.69 4.38
Collected

EXP .96 .99 .91 .83 .86 .95 1.04 1.02 .99 1.09 1.01 .99 1.03 1.04 1.08 1.05
Assigned

Results and Discussion
The data collected for 16 Xp projects were analyzed using small and compact models. The results are shown in
Table 7.

Table 7: Results

Model Fitness of the model (bEXP):- Reg. t-value bEXP interval
Coefficient.

R2 Adj R2 Std. p Value of
0.72 Err. A-Table

Small Model 0.92 0.88 0.0893 0.00 3.08 8.06 2.23 to 3.93

Compact

Model 0.88 0.86 0.097 0.00 3.30 9.58 2.55 to 4.05

Model Fitness: It can be seen from the table that both models’ R2 and Adj R2 are more than 86%. Thus
variation in the response variable is accounted by more than 86% of the variation in the response variable. Thus
the model fits well.

Since the p value of the ANOVA table is less than 0.01 for both models, there is a statistically significant
relationship between the variables at the 99% confidence level.

Results of Hypothesis Testing: The regression coefficients (bEXP) for the small and compact models are 3.08
and 3.30 respectively. The interval estimation of bEXP for Compact Model and Small Model are 2.23.to 3.93
and 2.55 to 4.05 respectively. Thus the B EXP value is not zero in the point estimation as well as B EXP can not have
zero value in the estimation interval. Thus the Null Hypothesis is rejected and alternate hypothesis(use of
extreme programming policies affect the software development productivity) is accepted. As t value in the table
for both the models are more than 1.76 the null hypothesis is rejected with 95% confidence level.

Quantification: 2.55 to 3.93 is a common range in estimation intervals of regression coefficient of both models.
Considering the minimum value of this common range there will be 25.5 % improvement in the productivity for
one level increase of usage of extreme programming practices.

S. Kuppuswami, K. Vivekanandan & Paul Rodrigues

Conclusion
We have proposed a framework to measure the effects of extreme programming practices on software productivity.
The framework contains a data analysis method and data collection method. The framework was applied to
collect data and analyze. The results indicate that the use of Extreme Programming Practice is a significant
factor affecting the software development productivity. At one level change in the level of usage of extreme
programming practice increases the productivity by 25.5 %. We hope this finding will help the managers to take
decision to adopt extreme programming for the software development.

References
COCOMO II Data Collection Questionnaire, COCOMO Web site: http://sunset.usc.edu/research/COCOMOII/index.html

COCOMO II Model Definition Manual, COCOMO Web site: http://sunset.usc.edu/research/COCOMOII/index.html

B.F. Clark (1997) “The Effects Of Software Process Maturity on Software Development Effort”, PhD Dissertation, University of
Southern California, August.

J. Baik (2000)“ The Effects of CASE Tools on Software Development Effort”, PhD Dissertation, University of Southern California,
December.

K. Beck (2000) “Extreme Programming Explained: Embrace Change” Addison Wesley.

L.A. Williams (2000)“ The Collaborative Software Process”, PhD Dissertation, University of Utah, August.

N.R. Darper and H. Smith (1996) “Applied Regression Analysis” Second Edition, John Wiley & Sons.

www.vsnl.net/education/kvivek27/mswordquestionnaire.doc.

